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Introduction. 

Philosophers of mathematics can be roughly divided into two 
groups. Type I is particularly fond of questions such as: What 
are the foundations of mathematics? What are numbers? What is a 
set? What is Church's thesis really about? What is decidability? 
What is infinity? What is mathematical truth? These questions are 
all situated within mathematics proper. Formalists, logicists, 
intuitionists, constructivists, finitists, strict and otherwise, are 
in this sense definitely type 1. Type II however wants answers 
to questions such as: How is mathematics done? What is a real 
mathematical proof? Why do mathematicians make such a fuss 
over the use of computers in order to find and construct proofs? 
Is it possible to gather evidence as to the plausibility of the 
correctness of a mathematical statement? How is it possible that 
an accepted proof turns out to be wrong? Type II is still a rare 
species but happily enough - that is, if you happen to be type II 
as well - this is changing.1 But it would be an exaggeration to 
claim that something like a theory of mathematical practice, 
mathematics as it is done, exists. There are plenty of ideas, 
plenty of detailed studies, but no general framework. I take it 
that hardly any argument, in fact none, is needed to show the 
importance of such a theory. If you wish to study problems 
having to do with the educational aspects of mathematics, or the 
diverse and complex relations between mathematics and the 
culture at large, or the psychological and social processes of 
mathematical invention and construction, you will obviously need 
a theory or at least a model of what mathematical practice is 
about. 

In this short paper I do not have the intention nor the 
pretence to present (the outline of) such a theory or model. My 
aim is quite modest although the point I wish to present is a, 
philosophically speaking, important one. In the search for this 
model or theory of mathematical practice, most type II research-



198 JEAN PAUL VAN BENDEGEM 

ers seem to agree that models and theories used by type I 
philosophers of mathematics are not interesting. Mter all, their 
approach is a highly normative one, ignoring all aspects of real 
mathematical life. Either these models are criticized, or they are 
just simply ignored. My point is that, although acknowledging 
that type I and type II researchers are in really different fields, 
their theories and models are (to use a fashionable term) to a 
large extent, commensurable. The basis allowing for the possi
bility of commensurability, is constituted by the notion of an 
artificial mathematician. In Type I research, there are plenty of 
artificial mathematicians around. The two most famous ones are 
Hilbert's ideal mathematician and Brouwer's creative subject. In 
Type II research, we obviously are talking about real mathemati
cians. It is therefore a natural question to ask whether real and 
artificial mathematicians are related. And if so, can these pos
sible relations form the background on which to compare type I 
and type II theories. As will be shown, there is a gradual 
transition from extreme Type I theories to extreme Type II 
theories. 

The God-like mathematician. 

No doubt most working mathematicians assume set theory - i.e. 
ZFC, Zermelo-Fraenkel set theory with Axiom of Choice - as the 
best (type I) foundations around for mathematics at the present 
moment. The standard formulation consists of (i) some version of 
classical first-order logic and (ii) the typical set-theoretical 
axioms. In such·a foundational theory no mention is made of a 
mathematician. The set-theorist will (rightly) claim that the 
logical axioms and rules mention only the logical signs and the 
set axioms mention only sets and operations on sets. However the 
fact that no properties of a mathematician are listed implicitly or 
explicitly in the theory, does not imply that therefore the theory 
deals only with mathematics and not with mathematicians. A 
straightforward way to associate a mathematician with a mathe
matical theory is quite simply to ask the following question. 
Suppose there is a being that has the property that it knows 
everything that the mathematical theory claims. What properties 
does that being have? Note that the question is a trivial one if 
asked in a type II approach. In that case one starts with the 
mathematician (or the mathematical community) and then studies 
how the mathematician does mathematics. The question is less 
trivial when asked in a type I context. In order to clarify this 
strategy, let me present a first example. 
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Most mathematicians would agree on the following statements: 
(i) there is something like a mathematical universe, (ii) this 
universe is unique and (iii) in it all mathematical problems are 
settled. The mathematicians' task is to discover and chart this 
universe, with the knowledge that a complete map is impossible. 
But suppose that there is a being with the property that it has 
full knowledge of the mathematical universe. What epistemic 
properties does this being possess? Two important properties 
follow straight away. First, its knowledge is strongly complete. 
By (iii), all mathematical problems are settled, therefore given a 
mathematical problem or statement A, either A is the case in the 
mathematical universe or not-A is the case in the mathematical 
universe. Secondly, by (i) and (ii), its knowledge is weakly 
complete as well. In model-theoretic terms, (i) guarantees the 
existence of a model, whereas (ii) guarantees the uniqueness of 
this modeL If this hypothetical mathematician has full knowledge 
of this model, this obviously implies the weak completeness. From 
these two properties, a third, crucial one is derived: this being 
must have truly god-like powers! The reason is quite simple. For 
an epistemic subject, to know a strongly and weakly complete 
first-order theory, implies it must have an actual infinite ca
pacity to store knowledge. If the capacity were restricted to 
potential infinity, then undecidability results become unavoidable 
and full knowledge of the mathematical universe is no longer 
possible. Errett Bishop summarized his critique on classical 
mathematics when he wrote in his [1976]2: " •.. classical mathemat
ics concerns itself with operations that can be carried out by 
God" and "If God has mathematics of his own that needs to be 
done, let him do it himself". In terms of the above analysis, an 
even stronger statement can be made: he is the only one who can 
do it, he has to do it himself. 

It is perhaps interesting to present an example of the 
epistemic strength of this God-mathematician (GM). Bishop him
self introduced in his (1985)3 the following example. Let (An) be 
a binary sequence. Then the GM will accept the following prin
ciple, the so-called Limited Principle of Omniscience (LPO): Either 
there is an n such that An = 1, or else An = 0 for all n. If we 
assume that GM can indeed decide this problem, then he can 
solve the following problem. Take an unsolved mathematical 
problem, e.g. Fermat's Last Theorem (FLT) or Goldbach's Conjec
ture. Now consider the following sequence : in the sequence 
(An), An = 1 if FLT is provable and An = 0 if not-FLT is 
provable. Obviously the sequence (An) will consist either of all 
ones, or of all zeros. However it is not obvious at all which one 
is the case (at least for us, human mortals). Yet, if LPO holds, GM 
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can decide the matter. Thus GM can decide whether FLT or 
not-FLT holds. Note that for GM mathematics ceases to be an 
interesting enterprise, for the simple reason that everything is 
already known. 

It is interesting to note the close similarity between GM and 
the Demon of Laplace. In the very same sense that Laplace's 
Demon corresponds to the ideal physicist, GM corresponds to the 
ideal mathematician. For the Demon too, the universe ceases to be 
an interesting place, as it holds no secrets. For the Demon too, 
time ceases to be real, just as GM lives in a timeless realm. One 
might well wonder whether the parallel breakdown of the Demon 
and GM is related or not. 

The constructivist mathematician. 

If God-like mathematicians have little or nothing to do with us, 
are we not best advised to scale this hypothetical being down to 
our size? Basically, there are two options : (i) assume the 
existence of a unique, mathematical universe, but deny one can 
have a full knowledge of it, and (ii) deny the existence of a 
unique mathematical universe altogether. The second option 
corresponds roughly to the route taken by Brouwer, whereas the 
first option is currently explored in epistemic mathematics". The 
crucial difference between these two approaches is directly 
linked to the discovery-construction distinction. Are we won
dering around in a mathematical universe wherein we discover 
mathematical theorems, or are we just exploring a creation of our 
own making? I will not go into this discussion - this is a quite 
separate topic - for it is sufficient to note that in both cases the 
answer will be the same to the following question: what is the 
epistemic content of a hypothetical mathematician whose· capacity 
is limited to potential infinity? The answer is: what is accessible 
to the mathematician on the basis of construction and proof. 
Although perhaps at first sight. this answer may seem a clear 
one, it is nevertheless highly ambiguous. The history of (the 
philosophy of) mathematics has shown us that there are many 
different ways to sharpen this answer. In other words, there are 
many constructivist mathematics (CM) imaginable. However, as I 
will argue, they all share a set of non-human properties. Or, to 
put it differently, CM still has some distinctly type I properties 
that distinguish it clearly from a type II mathematician. Thus the 
differences do not appear to be essential for the argumentation 
presented in this paper. Nevertheless, let me briefly present 
three examples to illustrate the richness of the constructivist 
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approach. 
For the intuitionist, CM(I) knows A if there is in principle, a 

proof or construction of A available, i.e. CM(I) is capable of 
producing a proof of A, or a construction for A. Obviously, CM(I) 
will reject LPO. But CM(I) will also reject Markov's principle 
(MP): If (An) is a binary sequence such that it is not the case 
for all n, that An = 0, then there is a n such that An = 1. The 
reason is that for the intuitionist not-A means that given a proof 
or construction of A, this proof or construction can be extended 
into a proof of something absurd or into an impossible construc
tion. Thus not-A stands for "If A, then absurdity". In the case 
of MP, if CM(I) has shown that it is not the case that for all n, 
An = 0, then he has only shown that the assumption that all An = 
o leads to an absurdity. This given him no clue as to how the n, 
such that An = 1, can be found or constructed. 

The Russian constructivist, CM(R), however accepts MP. The 
reason here is that the notion of construction is replaced by the 
notion of algorithm in an extended sense. Cases such that, on the 
one hand, one knows that the algorithm will end on a certain 
input, but, on the other hand, no finite bound can be specified 
beforehand, are accepted. On the other hand, CM(R) will reject 
some intuitionist principles, such as the Fan Theorem (FT). 

A third version is Bishop's constructivist, CM(B). This is the 
weakest version, as neither MP nor e.g. FT are accepted. The 
main advantage of Bishop's constructivism is that it is consistent 
with classical analysis (assuming the consistency of the latter, of 
course). Both intuitionist and Russian constructivism are exten
sions of Bishop's constructivism but both are inconsistent with 
classical analysis. Furthermore, intuitionism is inconsistent with 
Russian constructivism. Note too, that these three approaches do 
not exhaust the whole range of constructivist theories. I refer 
the reader to Beeson's [1985]5 for an overview. 

Let me now return to the main line of the argument. What 
properties of CM{x) - where x is your favourite brand of con
structivism - ~e still clearly of type 1. Basically, there are two 
aspects of prime importance. Actually, these two problems will 
appear only too familiar to anyone acquainted with epistemic 
logic.6 

The first problem has to do with true knowledge. If CM(x) 
knows A, then A must be the case. In other words, the case 
wherein CM(x) knows A, but not-A is a mathematical theorem, 
does not occur. I will refer to this principle as IE, the principle 
of Immunity of Error. It is hardly necessary to argue that IE is 
a typical type I property. Real mathematicians do believe impos
sible things from time to time. They did e.g. believe such non-
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sensical statements as (.J"-1r'~ = -1. Moreover they knew that 
these statements were nonsensical. The fact that these mathema
ticians were fully aware of the absurdity involved, shows that an 
argument of the following type does not apply. One might pro
pose to weaken the IE-principle. Instead one could adopt the 
principle wIE (the .... leak Immunity Principle): If one knows that 
one knows A, then A must be the case. In other words, just 
knowing A does not guarantee the correctness of A. But, as said, 
that does not work. And it is rather useless, to weaken wIE even 
further, for what meaning could be given to the statement that 
'One knows that one knows that one knows that A without it 
being the fact that one knows that one knows that A'? Further
more, they managed to deal with these absurdities and to derive 
interesting, important and, above all, correct mathematical 
conclusions from them. To quote another famous historical ex
ample, Berkeley did show convincingly that Newton's treatment 
of infinitesimals was inconsistent, but most historians will agree 
that it was a good thing for the development of mathematics, 
analysis in particular, that Newton largely ignored this criticism 
and continued to develop this inconsistent theory. Actually, with 
the advent of non-standard analysis, one could argue that 
consistent talk about infinitesimals is, in fact, possible. 

The second problem has to do with the principle IC, the 
principle of Immediate Consequences. Suppose that CM(x) knows 
A and that B is a logical consequence of A. Then CM(x) must also 
know B. IC is surely acceptable, for it says nothing but: if you 
know A and there is a proof - according to your favourite brand 
x - of B from A, then surely you must know B. But if this is 
acceptable, then it has the immediate, startling conclusion that if 
CM(x) knows A, then CM(x) must know all logical consequences 
from A. And this seems less or not at all acceptable when 
discussing real mathematicians. Obviously no real mathematician 
has such insight. I mentioned at the beginning of this paper, 
ZFC as the foundations used today by most working mathemati
cians. Every mathematician who knows these axioms, therefore 
knows all the logical consequences of these axioms, i.e. (s)he 
knows all the theorems of set theory. One might object that for 
CM(x) to know that B is a logical consequence of A, means that 
CM(x) has a proof in principle of B from A. Thus, to know a 
logical consequence, means quite simply to be able to present a 
proof when asked to do so. But this only increases the mystery: 
what kind of knowledge is this knowledge of "proofs in prin
ciple"? One way or another, this must reduce to having direct 
access to the mathematical universe, where one can "see" 
whether B is a logical consequence of A or not. True, CM(x) can 
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only see part of the universe, nevertheless, it is somewhat 
startling to corne to the conclusion that GM and CM(x) are closer 
relatives than one might have imagined. 

The finitist mathematician. 

How should we modify CM(x) such that the IE principle and the 
1M principle no longer hold? In order to reject the 1M principle, 
it is sufficient to replace the notion of proof in principle by the 
notion of real proof. A real proof is characterized by the fact 
that it should be recognizable as a proof by a mathematician that 
is bounded in time and in space. Real proofs are sequences of 
signs written in some language or other. It seems appropriate to 
call a mathematician thus limited, a finite mathematician (FM). 
Actually, in this case too, it would be better to speak of FM(x) 
for, as Ernst Welti has shown in his excellent, historical study, 
there are many types of finitist mathematics, strict or otherwise, 
around.7 However, just as in the constructivist's case, it is not 
necessary to go into details. It is easy enough to see that the 
presence of finite bounds must result in the violation of the 1M 
principle. For suppose, to keep matters simple, that an overall 
bound, say L, is defined on the length of proofs. FM can only 
check and thus accept or reject proofs below a certain upper 
bound. Suppose further that FM has accepted A as a theorem 
after inspecting the proof of A, having a length less than L. 
Finally, suppose that FM h,as also accepted a proof of 'if A, then 
B', this proof equally having a length less then L. It does not 
follow that therefore FM has to accept the proof of B, since the 
proof of B may have a length larger than L. For the proof of B 
will be the result of the concatenation of the proof of A and of 
the proof of 'if A, then B'. Thus it is rather easy to reject the 1M 
principle. The IE principle, however, is a quite different 
problem. 

On the one hand, it is obvious that the possibility of error 
should be allowed. The history of mathematics presents an 
interesting story of, what one could call, creative mistakes. 
Precisely because mistakes were made, the mathematical commu
nity was able to see the next step to take. But, on the other 
hand, it is not clear at all how one should proceed. What princi
ples can be formulated about an artificial mathematician that 
allow this being to make mistakes and to learn from them? Two 
alternatives present themselves. The first one is to replace the 
under lying contradiction-free logic of mathematics by a para
consistent or a dialectical logic.s The possibility is then allowed 
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for to accept that 'if FM knows A, then A is the case', that 'FM 
knows A', yet that 'not-A is the case'. However, this first alter
native will surely have to be supplemented by some methods for 
'repairing' the error. But, as must be obvious, these methods 
cannot be algorithms. If they were, it would be sufficient to 
apply them each time a contradiction arises thus establishing a 
modified form of the IE-principle. If an error occurs, it can be 
'calculated away'. Thus heuristics have to be introduced. Inno
cent though this conclusion may seem, it is of fundamental 
importance. So far, we always assumed that whatever the artifi
cial mathematician learns about the mathematical universe, it is 
learned truthfully. At this point, the possibility is introduced 
that the artificial mathematician may be misled by what he or she 
thinks to be the case in the mathematical universe. In other 
words, this universe itself can no longer be used as a justifica
tory device. FM can no longer say, 'I believe or I know A, 
because A is a mathematical fact, and, therefore, true in the 
mathematical universe.' FM will have to look for other criteria to 
convince himself or herself, that he or she knows A truthfully. 

The real individual mathematician. 

The type I philosopher might remark at this point that it is 
clearly impossible to have mathematicians making errors. If we 
restrict ourselves to FM-like mathematicians, then any proof 
prese'nted will be a surveyable proof because of the limits 
imposed on time and place resources. But a surveyable proof can 
decidably be found out to be error-free or not. If not, the error 
can be located and repaired. Why, then, do we need the heuris
tics? The answer, in all its simplicity, is this: what most mathe
maticians write and read most of the time are not proofs in the 
formal sense of the word. They are, what I have called elsewhere 
proof-ou tlines.9 That is, what are presented, are the major steps 
in the proof. The mathematician who writes the proof, thereby 
assumes that a trained mathematician with sufficiently knowledge 
of the particular mathematical field the proof is about, is capable 
to fill in the missing steps. The problem is not that mathemati
cians should be accused of laziness or sloppiness, the matter is 
quite simply that the demand of, formally speaking, correct 
proofs, is an impossible one. If something has been made clear 
by Principia Mathematica, then surely, it is the fact that that is 
not the way to do mathematics. If errors occur in a proof
outline, they do because the mathematician assumed wrongly that 
a particular step could be filled in. Therefore, errors are likely 
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to occur - the history of mathematics tells us BOlO - and heuris
tics are needed to repair these errors. 

To illustrate this thesis, let me present three heuristics that 
have been frequently employed in mathematics to search for 
errors and to repair the damage if error occurred. 

The first example is well-known from Lakatos' brilliant study 
Proofs and Refutations on Euler's conjecture, V-E+F = 2, i.e. the 
statement that, given a polyhedron, the number of vertices 
minus the number of edges plus the number of faces always 
equals two. The three-part heuristic Lakatos arrives at, is the 
following: 

"Rule 1. If you have a conjecture, set out to prove it and to 
refute it. Inspect the proof carefully to prepare a list of non
trivial lemmas (proof-analysis); find counterexamples both to the 
conjecture (global counterexamples) and to the suspect lemmas 
(local counterexamples). 

Rule 2. If you have a global counterexample discard your 
conjecture, add to your proof-analysis a suitable lemma that will 
be refuted by the counterexample, and replace the discarded 
conjecture by an improved one that incorporates that lemma as a 
condition. Do not allow a refutation to be dismissed as a monster. 
Try to make all 'hidden lemmas' explicit. 

Rule 3. If you have a local counterexample, check to see 
whether it is not also a global counterexample. If it is, you can 
easily apply Rule 2."11 

The second example concerns a heuristic that I have labelled 
confining inconsistencies .12 Especially, in the pre-Newtonian and 
pre-Leibnizian period in the development of analysis, many 
mathematicians - Giles Persone de Roberval, John Wallis, Fran<;:ois 
Viete to name but a few - were developing mathematical theories 
that were clearly inconsistent. However they did manage to work 
with these inconsistencies because in many cases these inconsis
tencies were confined. An example may clarify the matter. Wallis 
had the following beautiful proof for the area of a triangle.13 

H 
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The triangle is divided into an infinite number, m, of lines. The 
area of the triangle is the sum of all the tiny rectangles. Each of 
these rectangles has a height HIm and a length b. Thus the area 
of the triangle is equal to I; b.H/m or H/m.I; b. I; b is an arithmet
ical progression with an infinite number of terms, with first term 
B and last term O. Hence I; b = B.m/2. Thus the area is equal to 
H/m.B.m/2 = H.B/2. Wallis knew that was the result he should 
obtain. Because there are many ways, and different methods to 
obtain the area of a triangle. Although the proof seems hilarious 
- at least to modern eyes - the conclusion is correct. Therefore 
in any other proof in which the area of a triangle had to be 
calculated, Wallis could safely insert the above proof. In this 
sense, the inconsistency is confined, it is not allowed, so to 
speak, to escape from the proof wherein it occurs.14 

The third example is a heuristic, so familiar in mathematics, 
that probably, most mathematicians are not aware of the crucial 
role it plays: multiple proofs or proof-outlines. Mathematicians do 
spend a lot of their time, rewriting proofs and searching for 
different proofs of theorems that already have been proved. For 
some famous theorems, the list is quite impressive: there are no 
less than 96 different proofs of the Pythagoras theorem. IS Every 
mathematician knows at least two proofs of the existence of an 
infinite number of primes (the classical Euclidean proof and the 
proof related to the Riemann zeta-function). In another paper, I 
have shown how this heuristic plays an important role in evalu
ating the importance of a mathematical problem. 16 

One important note should be added here: the heuristics 
presented here, are clearly rough heuristics. True, they are 
more specific than e.g. Polya's first heuristics in How To Solve 
It. But, tasks such as, 'Try to prove the conjecture' and 'Find an 
alternative proof' are not exactly helpful for the working mathe
matician. What is needed, is a worked-out theory of more spe
cific, domain-related detailed heuristics. In the area of Auto
mated Reasoning, one of the many branches of Artificial Intelli
gence, this is precisely what one is looking for. However, the 
way things look at the present moment, it is still the case that 
only formal proofs are considered. Up to my knowledge, no work 
is being done on the level of proof-outlines. On the other hand, 
it must be mentioned that within the computer world, noo
monotonic logic is highly developed. This logic enables its user 
to revise currently held beliefs. In this sense, it shares some 
properties with paraconsistent and dialectical logics, although 
very different from it.l? As indicated while discussing the finitist 
mathematician, this is certainly needed as a crucial element in 
any theory of the real individual mathematician. 
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The real social mathematician. 

Individual heuristics, however, do not tell the whole story. Of 
course, it would be an easy way out to claim that the mathemati
cian, as part of the mathematical community, only exists as a 
mathematician in virtue of his or her membership of that commu
nity. But, that does not explain why, if one is interested in 
understanding the dynamics of mathematical change (as type II 
philosophers are), social elements should be taken into account. 
As in the case of the use of heuristics, I believe there to be at 
least two major arguments in support of this thesis. 

The first argument relates to a point, argued for in the 
preceding paragraph. Mathematicians do not write proofs, but 
proof-outlines. Proof-outlines do not have a standard form in the 
sense that formal proofs do. They are not a sequence of formu
las, where each formula is either an axiom or the result of the 
application of a derivation rule on formulas already occurring in 
the list. Instead they can take many different forms. As an 
example, compare these two proofs of the same theorem, namely 
the fundamental theorem of arithmetic. (Two minor notational 
changes have been introduced. Instead of using subscripts, the 
notation a ..... b is used to indicate a with subscript b. a to the 
power b is written [a,b])18 

Version 1. To prove the result, note first that if a prime p 
divides a product mn of natural numbers then either p divides m 
or p divides n. Indeed if p does not divide m then (p,m) = 1 
whence there exist integers x, y such that px + my = 1; thus we 
have pnx: + mny = n and hence p divides n. More generally we 
conclude that if p divides n"'1n"'2 •.. n"'k then p divides n ..... 1 for 
some 1. Now suppose that, apart from the factorization N = 
[p"'1,J ..... 1] ... [p"k,j"'k] derived above, there is another decom
position and that p' is one of· the primes occurring therein. From 
the preceding conclusion we obtain p' = p ..... 1 for some L Hence we 
deduce that, if the standard factorization for NIp' is unique, 
then so also is that for N. The fundamental theorem follows by 
induction. 

Version 2. First, N must have at least one representation, N = 
[p"1,a""1][p"2,a"'2] ... [p"n,a ..... n] (1). Let a be the smallest divisor 
of N which is > 1. It must be prime, since if not, a would have a 
divisor > 1 and < a. This divisor, < a, would divide N and this 
contradicts the definition of a. Write a now as p ..... 1, and the 
quotient N/p"'l, as N"'1. Repeat the process with N"1. The process 
must terminate, since N > N"l > N ..... 2 > ••• > 1. This generates Eq. 
(1). Now if there were a second representation, by the corollary 
of Theorem 6, each p"'i must equal some q"i, since p ..... iIN. Likewise 
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each q"'i must equal some p L Therefore p"'i = q"'i and m = n. If 
b"'i > aAi, divide [p"'i,a"'i] into Eqs. (1) and (2). (Note: Eq. (2) is 
the second representation: [q .... l,b"'1][q ... 2,b"'2] .•• [q .... n,b ... n]). Then 
p""i would divide the quotient in Eq. (2) but not in Eq. (1). This 
contradiction shows that a .... i = b .... i. 

These two proofs are sufficiently different to warrant the 
introduction of the notion of style in mathematics. It is not an 
exaggeration to claim that a mathematician develops a certain 
type of style and that one can identify him or her by it. It also 
implies - and here the social element enters the picture - that 
mathematicians sharing the same' style will understand each 
other better. After all, they do speak the same language, or, 
should one 'say, the same mathematical dialect. Seen from this 
perspective, the Bourbaki project, apart from its mathematical 
content, was an equally important project in its proposal for a 
new mathematical style. The Bourbaki volumes aspired to be a 
new foundations of mathematics, but at the same time, they 
constituted a manual of style for it. 

The second argument has to do with a recent, intertwined, 
two-fold development or, better, change in mathematical practice. 

Long proofs are not uncommon in mathematics, as is well
known. However, it is a quite recent phenomenon that some 
proofs turn out to be so long that an individual mathematician is 
incapable of surveying it. The exemplar in this case is the 
classification theorem of finite groups, estimated at about 15.000 
pages. 19 Instead one can only claim that the proof is socially 
surveyable, not individually surveyable. Mathematician A has 
checked part X and mathematician B part Y, and putting their 
efforts together, they come to the conclusion that the whole 
proof is correct. Neither A nor B individually can make this 
claim, but together they can. Or, in other words, the proof as a 
mathematically accepted proof, exists only on the social level. 
Hence, the basic unit to consider is not the individual mathema
tician, but the mathematical community. 

The related part has to do with computer-proofs. Since the 
'drama' of the four-colour theorem, it has become apparent that 
the presence of the computer as a symbol manipulating device, 
must have its effect on mathematical practice. If part of the 
proof has been carried out by computer, and the calculations are 
that cumbersome and intricate that neither a human mathemati
cian, nor the mathematical community, is likely to check it in 
detail, are we then in a position to accept the proof? If one is 
tempted to answer 'yes' to this question, then one must accept 
the conclusion that 'prCXJf', as classically understood, is not the 
only way to establish new mathematical results. This is really 
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going beyond heuristics, for heuristics point the way to a 
classical proof, whereas, in the computer case, this computer 
calculations are the best available. The problem is not a recent 
one. Mark Steiner in his Mathematical Knowledge20 already made a 
case for other methods, besides mathematical proof (in the 
classical sense, i.e. up to the real individual mathematician 
(RIM», to establish the truth of a mathematical proposition. 
Perhaps one is not inclined to follow along such a route, but, if 
understanding mathematical practice is the goal, these aspects 
will have to be taken into account. 

Although the real social mathematician (RSM) is not the end 
of the continuum - surely we should go further and consider the 
real social mathematician in society at large (RSLM) - I hope to 
have made a convincing case for the idea that GM and RSM, 
although worlds apart, are related. 

A tentative conclusion. 

The subject of this paper, basically, was to answer this question: 
If X is any type of mathematician, then for X to know A, where A 
is a mathematical statement, ~eans exactly what? We have pro
gressed from the God-like mathematician, GM, for whom the 
answer was quite straightforward. For GM to know A, is simply 
equivalent to A being true in the unique mathematical universe. 
Along come the constructivists who want to scale down GM to 
some kind of 'ideally real' mathematician CM(x). CM(x) knows A if 
CM(x) has a proof or construction available of A, in principle. 
Replacing the 'in principle' part by 'actually', CM(x) is trans
formed into some kind of finitist mathematician, FM. But - relying 
on some well-known arguments about epistemic logic - as it 
turns out, even FM is still a highly idealized being. Establishing 
a link with the real - individual or socialized - mathematician 
must force us into introducing elements in the story that one 
would perhaps not expeCt in the mathematical context: heuristics, 
failure and error (and therefore revision), style (and therefore 
aesthetics) and the social coherence of the mathematical com
munity. 

Although it is clear that the transition from GM to RSM, is a 
gradual one, the differences between the extremes of the con
tinuum are enormous. But that has been known all along. The 
more interesting part is that it is gradual. Seen from the view
point of the RIM or the RSM, FM, CM(x) and GM are to be seen as 
increasing, thereby, simplifying and helpful abstractions. Note 
too that all mathematicians mentioned, artificial and otherwise, 
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are only snapshots from an immense gallery of possibilities. 
Perhaps the reader wonders why I am so insistent on this 

point. Basically, there are two reasons. The first reason has to 
do with our understanding of RIM and RSM. As said, FM, CM(x) 
and the like, may turn out to be very helpful fictions, in much 
the same way, that propositional logic is a quite interesting, yet 
highly fictional logic. In this paper, I hope to have made the 
point that, e.g., epistemic logic is really worth while to look into. 
Thereby, I am also claiming that the project to formulate a 
theory of mathematical practice, will benefit from the use of 
formal tools such as epistemic logic. In the best of cases, it 
should be possible to formulate theorems about the nature of 
mathematical practice. As must be obvious, this position is not 
similar to Wittgenstein's attitude. Without going into details, one 
example may suffice to make the distinction clear. For Witt
genstein, the social coherence of the mathematical community, 
does not need to be explained for. It just happens to be that 
way, and it would not make sense to ask a mathematician why he 
or she is willing to accept the verdict of his or her colleague as 
final. 21 In this case, I want to find arguments that explain the 
(necessity of the) coherence. One argument mentioned surely is 
that, if A wants to check the proof of B, it increases efficiency, 
if A and B share the same mathematical style. But the latter 
feature is precisely an important element that contributes to 
social coherence. It is, at the same time, a refusal to let the 
history, psychology, sociology and economy of mathematics de
generate into a loose collection of interesting, anecdotal, there
fore accidental, bits and pieces. The second reason, related to 
the first one, is that it is still possible to maintain the existence 
of a unique mathematical universe while holding the view that 
the way mathematics is done, is best described using a RIM or 
RSM type of model. What is said here, will sound only too familiar 
to any philosopher. The only thing that I am claiming, is that the 
minimal realist position holds for mathematics as well. It does not 
follow - and I emphasize this point most strongly - that taking a 
sociological, psychological or whatever point of view, implies the 
impossibility of the existence of something like, the mathematics. 
True, one might argue, that a separate entity such as the unique 
mathematical universe, is not called for, but, as must be clear, an 
appeal to the practice of mathematics to deny its existence, does 
not carry the force many authors expect or want it to do. 

It would be wishful thinking to believe that the above plea 
will bring together type I and type II philosophers of mathemat
ics. Perhaps they do not need to be brought together physically. 
If a common language is available - and a modest proposal for a 



FOUNDATIONS AND PRACTICE 211 

candidate is sketched out in this paper - it will be there for 
whoever wants to use it. Now, all too often, a false dichotomy is 
drawn. 

Bevoegdverklaard Navorser NFWO - Rijksuniversiteit Gent 
Vrije Universiteit Brussel 

* A first draft of this paper was presented at the Center for 
Philosophy of Science, University of Pittsburgh, October 1988 on 
invitation of Jerry Massey. This version has benefited from 
criticisms both from Jerry Massey, Ken Manders and the other 
fellows of the Center present at the moment. Especially Ken 
Manders' criticisms were important but, taken seriously (as they 
should), they constituted a new research program. 
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