MATHEMATICAL EXPERIMENTS AND
MATHEMATICAL PICTURES

JEaN PauL Vax BEXDEGEM

1. INTRODUCTION

In a previous paper *What, if anything, is an experiment in mathematics?’
[1995]. I undertook an investigation of the question whether there is any such
thing as an experiment (say, in the naive sense of the physical sciences) in
mathematics. In fact. what I did was to examine what mathematicians them-
selves have reported as genuine mathematical experiments. In summary,
these were my conclusions:

(Cl)  Two types of experiments are mentioned in the literature. One
sees a compultation (preferably using sophisticated machinery)
as an experiment. the other sees ‘real-world” experiments as
possible candidates:

(C2) I rejected the idea of a computation as an experiment for the
simple fact that to any computation there corresponds an arith-
metical equation and that equation can be proved in a suitable
part or fragment of arithmetic:

(C3) 1alsorejected the idea of a real-world experiment because ei-
ther the result is mathematically useless or. if the experiment
produces a different result, it is not the mathematics that is
questioned but the underiying physical theory (see further for
an example, viz., Plateau’s problem):

(C4)  Therefore, there are no such things as experiments in mathe-
matics.

Although (C4) seems to be a firmly stated and bold conclusion. it is subject
to the initial proviso, namely that I am reflecting here on the notion of mathe-
matical experiment as used by the mathematicians themselves. Rather trivial-
ly, this means that I have only dealt with what one might call the standard
picture of mathematics as seen, more implicitly than explicitly, by the aver-
age mathematician. I will not try to spell out this picture'-that would no
doubt make a fascinating piece of sociology of mathematics. see, e.g.,
Fischer. Restivo and Van Bendegem [1993]-but [ am quite convinced that it
would have the following ingredients:

1. Evidence for this standard picture can be found in my [1993] wherefrom these characteris-
tics are drawn.
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Doing mathematics is to a large extent a self-justified activity:
Mathematicians all implicitly or explicitly share the idea of the
existence of a unique mathematical universe:

There is (almost) complete agreement on the preferred method
to obtain the description of the universe: the method of (more
or less formalized) proofs:

They share “the general accessibility belief: If. for any mathe-
matical statement S. there is a proof p of S, then it can, in prin-
ciple, be found or constructed by any mathematician;

They share ‘the general control belief’: Any proof can be
checked by any mathematician such that he or she can be cer-
tain that the proof is either correct or faultv:

How a proof is to be found is mostly a matter of some kind of
innate capabilities the mathematician is supposed to have.
Terms such as ‘gifted’. ‘talented’. ‘having the right sort of in-
tuition” are used to describe these somewhat mystical powers.

Thus. the general conclusion of that paper could be formulated thus: the
notion of a mathematical experiment does not make sense within the stand-
ard picture of mathematics. This statement leads quite naturally to the fol-
lowing question: Are there alternative pictures of mathematics such that the
notion of a mathematical experiment does make sense within it? Of course.
this is a philosophical problem of first order and it would therefore require a
book-length study to formulate an answer to it. My aim in these few pages is
rather modest: to bring together some arguments that support the idea of gen-
uine mathematical experiments notwithstanding all the evidence to the con-
trary if we look at current mathematical practice. To be more specific, I will

claim that:

(1)

All mathematical problems when traced back in the history of
mathematics eventually reduce to a practical real-world prob-
lem. Although this does not imply an empiricist view of math-
ematics. it comes rather close. I will refer to this view as the
chronologically empirical view, and

The fact that the standard picture does not view mathematics
as empirical at all is, above all. due to, what I would like to
call. the a piriori obsession. It has led to a sharp division in the
scientific enterprise, enabling mathematics to acquire its own
very special status.
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2. WHAT 1S EMPIRICAL ABOUT ABSTRACT MATHEMATICS?
Consider the following passage:

An elliptic curve over Q 1s said to be modular if it has a finite covering by a
modular curve of the form X (N). Any such elliptic curve has the property

that its Hasse-Weil zeta function has an analvtic continuation and satisfies a
functional equation of the standard type.

What on earth is empirical about this? Are we not talking about the most
abstract object possible? It would be follv 1o say: ‘No. we are not’. hence the
reasonableness of the question. My claim is that the if we retrace the steps
that have led to the above passage. then somewhere we will stumble on really
concrete problems involving real objects. A few examples may serve as illus-
tration, though what is really required of course are general arguments as to
why any problem, no matter its level of abstractness, must eventually reduce
to a practical problem.

Example I: Fermat's Last Theorem.” The above quote is the opening para-
graph of a paper entitled “Modular elliptic curves and Fermat's Last Theo-
rem’: its author, the now famous mathematician Andrew Wiles. To the aver-
age professional mathematician this paper is extremely hard to read. even
harder to understand. It reaches one of those rare summits of abstraction in
mathematics so much so that it is claimed that no more than ten mathemati-
cians throughout the Western world are capable of appreciating and evaluat-
ing the work done by Wiles (and Taylor).

Nevertheless. the origin of the problem is to be found in an algebra book of
a Greek mathematician. Although a problem such as “Find a. b and ¢ such
that a* + b” = ¢ might seem an abstract question about numbers, in fact, as
we all know, it can be connected to right-angled triangles. There are many
reasons to believe that the solution 3° + 4° = 5° was found in an empirical
way. There does not seem to be a horribly large distance from the task ‘Find
a,bandc...” to the problem “Find a/l a. b and c...", the latter question being at
first answerable in a crude fashion~there are a finite number of them or there
is no upper limit to the number of solutions—in a later stage answerable in a
more detailed fashion. But squares of numbers are related to squares (what
else?), third powers are related to cubes.... is it not unavoidable to extend the
question and ask whether the equation a* + b* = ¢ has solutions or not”

2. Details of Fermat's Last Theorem and references can be found in my [1987]. The last
result mentioned there was Mordell's conjecture. What is therefore lacking. are the results of
Andrew Wiles published as Wiles [19953] and Taylor and Wiles [1995]. The former 1s the main
work. the latier is a gap-filling addendum to the former.

3. On top of that. this equation is clearly linked 1o one of the oldest geometrica
around: the duplication of the cube, Take a equal to b. and the equation reduces to 2
integer solution of this equation would imply in a straigk
tion problem.

problems
An

forward way a solution to the duplica-

A



206 REALISM IN THE SCIENCES

Before vou know. the general question has been asked: what about solutions
of a" + b" = ¢"? Once thus generalized, one can permit oneself to *forget’ that
fourth powers do not seem to correspond to anything geometric, to “forget’
that if the exponent n equals a number larger than the numbers of electrons in
the universe, the numbers in fact no longer correspond to no matter what. If
on top of that. the methods one has selected through the ages to handle this
type of problem. support the process of forgetting, then it becomes almost
unavoidable to generalize from a problem in elementary number theory to
complex numbers (after all, X* + ¥* = (X + y)(x* + xy + y°), but that does not
seem to work for x* + y*, unless you acceprt that (x* + iy*)(x*~iy) is a good
solution). But, sadly enough. complex numbers do not behave as vour stand-
ard numbers, e.g., prime decomposition is not unique,” thus ideal complex
numbers and their divisors come into play. The latter one can sort in classes,
one can calculate (a) class number(s) and that leads one to Bernoulli numbers
that connect with the exponential function. more precisely, x/(e’-1) =
E—B.- x°/n!. where B_is the n-th Bernoulli number. Before one is aware of it.
theorems such as the following appear:

Let p be a given prime greater than 2 and let g(1) and htl) be nonzero cyclot-
omic integers built up from a pth root of unity 1 # 1. Then g(1) divides h(l) if
and only if every prime divisor which divides g(1) also divides h(l) with multi-
plicity at least as great.

Should I continue with elliptic curves? If ¢ # 0. then it follows from a” + b"
= ¢", that {a/c)” + (b/c)" = 1. Write A for a/c and B for b/c. thus A" + B* = ]
describes a curve over the reals and what we look for. are rational solutions.
Then why not generalize to arbitrary algebraic number fields K (of which R.
the set of reals, is a special case. with its special subset Q. the set of ration-
als)? And there you have Mordell's conjecture:

Let K be an algebraic number field and let C be a nonsingular projective
curve over K, with genus g 2 2. Then the set of points of C which are K-
rational is necessarily finite.

Gerd Faltings proved this conjecture. But finite is not zero. For that we need
elliptic modular semistable curves. Then, finally. the answer is: no solutions.

Of course. this sketchy oversimplified slightly mystifying story does not
constitute full proof of my claim. but it does show to a certain extent how
‘naturally” abstraction occurs. This holds even stronger for the second exam-
ple. After all. one might object that problems such as Fermat's Last Theorem
are in a way still about very concrete things. All of the above could have been

4, A simple example: 3 can be written as 1.3 (so it would be a prime), but it can be equally
written as (2 - 1).(2 + 1). where 1 is the imaginary unit (so it is not a prime).
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summarized by saying that the problem is about powers of integers or ration-
als and that seems pretty concrete: a square as a sum of squares, a cubic as a
sum of cubics... But what about the “truly abstract’: set theory? Actually, it is
precisely set theory that inspired me to formulate the bold claim I am pre-
senting here. As a matter of fact, the development of set theory started out
from a very practical problem.

Example 2: Cantor’s transfinite set theory.® Start with the heat equation
well-known in physics: AT = (cp/h).dT/dt, where AT = &*T/ox* + d°T/dy~ +
d"T/9z>. This is a partial differential equation. What does a general solution
look like? Fourier gave an almost complete answer: a series of trigonometric
functions, i.e., sines and cosines. Surely there will be no discussion about the
concrete nature of sines and cosines. But having a solution is one thing. es-
tablishing that it is unique, another. In one of his first papers. Cantor gave a
solution to that problem: under certain conditions, the Fourier representation
of a given function is unique. However, the conditions had to be satisfied for
all points in the domain of the function. Could this condition be weakened?
Surely. if the number of exceptions is finite, this can be no problem at all.
Could there be an infinity of them? Yes, if they are distribuied in certain
ways. namely such that they form a convergent series. such that there is an
accumulation point. Cantor shows that this idea works for one accumulation
point. easily extending the result to a finite number of accumulation points.
less easily extending it to an accumulation point of accumulations points, and
there vou have the beginning of a transfinite number hierarchy. Add Dede-
kind to it, who was looking for a neat formulation of the real numbers and
transfinite set theory is born and the most important question has been asked
right from the start: how many real numbers are there? This problem required
the ingenious diagonal method, but the answer was startling enough: a lot
more than the (cardinal) number of natural numbers (or fractions or algebraic
numbers. for that matter). How could one avoid asking the next question:
what in between? And so we arrive at the (in)famous continuum hypothesis
(CH). problem number one of Hilbert's list of 23 main research topics for this
century.’

Exaimple 3: 1t is no doubt a rather trivial statement that natural numbers are
closely linked to numerical practice. Thus 1. 2.... are firmly rooted in the

empirical world. But then so are prime numbers. It does not require a lot of

5. The over-reduced story told here has one source mainly; Dauben [1979].

6. It is not difficult at all to show that all 23 research topics are easily reducible 1o concrete
problems. Actually. one of them. problem 6. asks precisely for a “Mathematische Behandlung
der Axiome der Physik™. In as much as Hilbert's list can be seen as representative for present-day
mathematical research. this is a rather direct way to support my claim. However. I will not do
this here and I prefer. instead. to focus on more general arguments. For an overview and discus-
sion. see Alexandrov [1971].
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mathematical insight to think of numbers in terms of geometrical arrange-
ments and then to ask questions about part and whole. But once there are
prime numbers, it seems natural fo ask ‘How many?’. This leads straight
away to what mathematicians themselves call one of the most beautiful theo-
rems of mathematics: the proof of the infinitude of prime numbers. But then
realizing that there is a very nice connection between on the one hand the

-

harmonic series X 1/n. for n =1, 2. 3.... and the infinite product [T 1/(1-1/p),
where p runs over all primes. To be precise. the connection is that both series
are identical.” Thus the infinitude of primes leads straightaway to the infini-
tude of the harmonic series. It is not a great step away to look for the general-
ization of the harmonic series, i.e., 2. I/n*, forn = I, 2. 3.... and k a given
exponent. Write this as a function of k. say Z(k). Then the above savs that
Z(1) = infinity. One of the beautiful results in mathematics is that Z(2) =
> 1/n* = /6. But why stop at the natural numbers as domain of the function
Z. Why not generalize to complex numbers? This leads to Z(s) = ¥ 1/,
where s is a complex number. The Riemann zeta-function is born. In fact, one
of the most famous (still) open problems in mathematics is the question:
What are the zeros of Z(s)?

As said before. these few examples do not constitute a general argument.
But. it seems obvious that if such abstract cases have an empirical origin. then
surely so for more ‘mundane’ mathematical problems. However, one might
object that all this shows is that mathematical problems have (perhaps) empiri-
cal roots. But then mathematics is not only about problems. Is not the most
interesting activity of mathematicians the task to search for proofs. And proofs
clearly do not have empirical origins. Let me argue briefly to the contrary.

[ claim that even the notion of proof is. to a certain extent, empirical in its
origin. I rely here mainly on the work done by Teun Koetsier in his [1991].
Without going into the details of the Lakatosian framework that he has taken
over and adapted to his particular needs. the rough outline of the model that
he presents consists of three levels:

(a) On the micro-level. individual mathematicians prove theo-
rems, formulate conjectures, check proofs or theorems. search
for counter-examples to disprove a statement. and so on.

(b) This micro-level activity presupposes of course that a mathe-
matician already knows. implicitly or explicitly, what are inter-

7. The proof is not difficult at all. Just remember that 1/(1 - 1/p). where p is a prime. can be

expressed as an infinite series. namely, | +(1/p) + (1/p)y + ...+ ( U/p)" + ... Thus each factor in the
infinite product [ 1/t1 - L/p) can be replaced by this sum. If we multiply out all these sums, each
term in the resulting sum will look like this: (1/p ’"'.(Vp.y=. ..(1/p y* or I/p".p.~. ..p,*. This

expression corresponds to the prime decomposition of some natural number n. thus it is of the
form 1/n. Take the sum of all the terms and you get the harmonic series ¥ I/n. What remains to

he key is the fact that the prime decomposition is unique.

be shown is the unigueness.
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esting mathematical problems (in a particular field). that she
knows what proof methods are likely to work for a particular
problem, that she knows what did or did not work in the past.
Koetsier calls this kind of knowledge a research project (RP)
to be situated on an intermediate level.

(c) Finally. on the macro-level, RPs are structured by research tra-
ditions (RTs): *A mathematical research tradition is a group
research activity, historically identifiable (in a certain period),
characterized by common general assumptions (in the form of,
e.g., definitions and axioms) about the entities that are being
studied in a particular fundamental mathematical domain, and
it involves assumptions about the appropriate methods to
prove properties of those entities” (Koetsier. [1991], p. 151).

The most important thing to note is that proof techniques are part and par-
cel of a research tradition and. therefore. part and parcel of certain specific
research projects. Hence as traditions and projects change and develop. so do
potentially proof methods. One of the examples given by Koetsier shows
precisely such a change. where the empirical origin of the notion of proof
becomes evident. In Greek mathematics, Koetsier distinguishes two tradi-
tions that he calls, chronologically, the Demonstrative Tradition (DT) and the
Euclidian Tradirion (ET). A major point of difference between DT and ET is
the fact that ET introduces the notion of proof as standard method for estab-
lishing mathematical truths. Koetsier claims that the proof method of DT is
non-deductive. It is based on a form of “Anschauung’. The best example to
illustrate this is the “proof” of (n+1¥ = n’ + 2.n + 1, in Pythagorean fashion.
Thus. to show that 4* = (3 + 1)* = 3° + 2.3 + 1, it is sufficient to look at these
two drawings:

Of course, if this is to count as a convincing method. we must assume that
a particular case can be “seen’ as an arbitrary case. That is, I am supposed not
only to grasp this tigure (or rather its meaning) but also all other cases similar
10 it. Granted that sense can be made of “proof by looking'.® then it is obvious

8. The expressi

simple arithr

‘proof by looking” is act

sally an entrv in Wells [1991]. 1 quote: “Many
". by examinin itzble fi 18). 1
Koetsier is right. one might j 15 well leave ot the ‘simple’, for h [ }
Becker, there is a "proof by looking” of this arithmetical fact: any number A1+2+
2+ ..+ suchthatp=1+2+2 +..+2 isaprime, is perfect.

facts can be proved "at si
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that proofs too have their origin in an activity that is not purely ‘mental’,
but involves a clearly visual act. All this being said, the transition from DT
to ET is a major one indeed. There does not seem to be a gradual transition.
The introduction, to name but the most important change, of the reductio
ad absurdum is a real break. If one is to prove A and to start from not-A,
then it is not clear at all how one is to visualize not-A. as A is supposed to
be the case in all circumstances.” But that is the problem to be addressed in
the next paragraph: how did mathematics not just grow away from its em-
pirical “roots’, but managed to acquire this special status of total abstract-

-

ness .

3,  THE A PRIORI ORSESSION OF (ABSTRACT) MATHEMATICS

If the claim made in the previous paragraph is correct, then. not taking into
account any other circumstances. two possibilities (roughly) remain:

(a) Either mathematics remained ‘faithful” to its empirical roots
and developed as such, or
(b) Mathematics drifted away from its roots to develop into a quite

different activity up to the point of denying its roots.

What if other circumstances are taken into account? Is it then not possible
that, since (b) is what we have actually seen happening in the history of
mathematics, one arrives at the conclusion that (a) is not a real possibility, for
the simple reason that it is quite impossible? Hence. even accepting the idea
of the empirical roots. this does not help to turn mathematics into an empiri-
cal science. Atfter all, if I happen to see a cloud formation in the sky on a
rainy day and I happen to notice that this formation seems to spell ‘p— p’. it
does not make sense to call the statement "p — p’ an empirical truth rather
than a logical truth on the basis of the fact that it occurs in nature.

Thus. the first thing T would like to show is that (a) does represent a genu-
ine possibility. Of course, as mathematics did not develop along the lines of
(a), what follows is necessarily a thought experiment.

9. To give an example: suppose | want to prove that there is no solution of the equation 4.x° +
2.x - 1 =0in integers. | reason as follows: suppose there is a solution n, Then 4.n° + 2.n is always
even. whether n is even or odd. Bat then 4.n° + 2.n - | is always odd and hence never equal to 0.
There seems to be no way to visualize the supposition. as 4.x° + 2.x - | = 0 does not in fact have
solutions in the integers. Of course. a way out. is 1o avoid reductio altogether. Hence the impor-
tance from this poimt of view of the work of constructivist mathemaricians, For this specific
case. it is sufficient to remark that b° - dac = 4 + 4.4 = 20 is not a perfect square.

10. A more exact formuiation would be to say: the level that is put forward as the ideal height
to reach. In ‘real” mathematics. this level is not always attained and a different story is told on
the stage and behind the screens. This metaphor is the basis of a rather provocative paper of
Reuben Hersh. namely his [1991].
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Suppose then that mathematics developed in such a way that the stand-
ards of proof never reached the level they did today."” To be more specific,
the introduction of an explicit formal language that seems to govern the
entire reasoning process did not take place. What I have in mind is the sort
of proof one would find in mathematical texts up to the 17th and 18th cen-
tury. Proofs of this type need not be absolutely convincing. There is room
for doubt (as Lakatos has shown quite explicitly). One might be tempted to
accept the proof but there is no necessary need to do so. In such circum-
stances, it is clear that something additional is required. It cannot be some-
thing in mathematics. it has to be something ourside. But then given its
empirical roots. why not try out an experiment? Thus, a fellow mathemati-
cian gives me a shoddy proof of Goldbach’s conjecture. After reading it
through as carefully as I can, [ am not convinced at all of its correctness, so
what I do is to try out a couple of tests. These come out positive. This does
not convince me that the proof is (after all) correct, but it surely helps to
strengthen my faith in its correctness.

Am [ not contradicting myself here? Did I not, in the introduction reject the
idea of a computation as an experiment for the simple fact that to any compu-
tation there corresponds an arithmetical equation and that equation can be
proved in a suitable part or fragment of arithmetic, i.e.. my claim (C2)? With-
in the standard picture. this is indeed so. But. within this empirically oriented
picture, a computation can be interpreted as a genuine experiment. To make
clear the distinction, let me have a second look at one of the examples [ gave
in my [1995]:

I can remember reading yvears ago that the probability of two positive inte-
gers, chosen at random. being relatively prime is 6/, 1t seems that one R.
Chartres. in about 1904, rested this mathematical result experimentally by
having each of fifty students write down at random five pairs of positive inte-
gers. Out of the 250 pairs thus obtained. he found 154 pairs were relatively
prime, giving a probability of 154/250. Calling this 6/x°, he found x = 3.12,
while m = 3.14159... (Honsberger [1970: 31)

I commented that “the result t = 3.12 does not force us to reconsider the
value of m. Thus, although such experiments are perhaps possible. they are
completely uninteresting and hence of no importance for mathematics as
such’. But suppose now that, due to the different standards of proof. the re-
sult is not all sure, namely, that the probability of two positive integers, cho-
sen at random, being relatively prime is 6/n*. The experiment is done and a
result comes out that says, e.g.. ® = 1.5. Then surely I have good reasons to
doubt the proof. Given the standard picture, I will undoubtedly question the
way the experiment 18 performed and invoke the “hazards™ of probabilistic
reasonings.

In short. what I claim is that, although perhaps the very same set of actions
is performed. their weight and their role in the mathematical undertaking is
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interpreted in an entirely different way. The problem is not on the level of
activities taking place or not, but on their interpretation(s).”!

Another possible objection is that perhaps for some (if not very few) math-
ematical theorems or theories we can design a sort of experiment, but for the
most (if not major) part mathematics is so abstract that it really stretches the
imagination beyond limits to believe that there is something empirical about
it. Here I can rely on an over-used if not over-rated argument. namely the
Lowenheim-Skolem result. Any theory. however complex, must have among
its models countable models. Hence, finite fragments of these countable
models can always be implemented in the ‘real world’. If it is a reasonable
assumption, as I believe it is, that a finite part of a countable model can be
relevant to the whole model. then. in this sense. experiments will always be
possible, and will be able to play a decisive role in certain cases.

But, one might remark, are these models not very often of the ‘weird’
kind? It is then reasonable to talk about an experiment” Should we not expect
a direct or obvious link between what the mathematical entities and the real-
world entities? No, we should not. I could easily argue that in. say. the physi-
cal sciences. such direct links are often missing—just think of elementary par-
ticle physics—but let me present a simple example that shows quite obviously
that there need not be a direct or obvious connection between an experiment
and a mathematical problem.

Example: What mathematical statement is connected to the following ex-
periment? Take a square piece of land. its side being 99 meters. Make a grid.
side 1 meter, and plant a tree on the intersections. thus 10.000 trees are plant-
ed. Position vourself at one of the corners of the land. Then there will always
be directions such that no tree will block vour view.'

Summarizing, as far as (a) is concerned. I am deeply convinced that this
sketchy presentation could be reformulated into a coherent picture that would
present mathematics as an empirical enterprise much as it is done in physics.
Therefore, if (a) is possible. why did (b) "make it"?

11. A second example T gave was Plateau’s problem that deals with surfaces of minimal
tension given certain boundaries, | wrote in my [1993]: ‘suppose that a soap film turned out 10
have a completely unexpected geomertrical form. then this would be devastating for the underly-
ing physical theory but not necessarily for the underlyving mathematics’. In fact. reality has con-
tradicted me. Mathematicians Hu. Kahng and Robins found soap films that did not fit the mathe-
matical solutions. No new physics was discovered. but the mathematical apparatus was adapted
1o take into account the thickness of the film, And all was well again. In this case, the experiment
did have an effect on the mathematics {although not in the strong sense that a proof was found to
be mistaken). in contrast to my claim.

12. Suppose that the corner where you are standing is the origin (0.0) of an imaginary coordi-
nate system. Each tree has integer coordinates (x.y) where 0 £ x,y < 99. Take the line of sight
that corresponds 1o the equation y = v2.x. If there was a tree on this line. then there would be an
and a m, such that m = \2.n, or \ m/n. But that is impossible. Hence. no tree stands on this
line (though. because of its thickness, it can partially overlap this line). Actually. there are an
infinity of clear lines of vision. namely all lines corresponding to v = vp.x. where p is a prime. T
leave open the question whether this could count as an experimental check of the infinitude of
primes.




MATHEMATICAL EXPERIMENTS AND MATHEMATICAL PICTURES 213

The standard answer would most probably run along the following lines:
mathematics. although perhaps empirical in its origin. soon found out that its
true domain of study are abstract objects. The knowledge acquired about ab-
stract objects stands quite apart from the knowledge one acquires about the
real world. Roughly we have a priori knowledge on the one hand, a posteri-
ori knowledge on the other hand. No wonder then that mathematics stands
apart. A priori knowledge is (often) considered to be necessary knowledge,
hence the certainty that mathematics provides.

Now ask yourself whether the history of Western philosophy could be told
without any reference to abstract objects. numbers, geometric elements. di-
vine entities, God, to name but the most important ones. Clearly not. Thus,
the conclusion seems almost trivial: of course. mathematics had to develop
along the lines of (b). The whole cultural setting was such that any other
development was almost excluded. Actually. a very strong case can be made
for this point of view. Just one tale-telling example. The quote that follows
has been taken from a letter addressed to Grace Chisholm Young. dated June
20, 1908;"

I have never proceeded from any ‘Genus supremum’ of the actual infinite.
Quite the contrary. I have rigorously proven that there is absolutely no ‘Genus
supremum’ of the actual infinite. What surpasses all that is finite and transfi-
nite 1s no "Genus: it is the single. completely individual unity in which every-
thing is included, which includes the *Absolute,” incomprehensible to human
understanding. This is the “Actus Purissimus’ which bv many is called "God’.

The author: Georg Cantor. | do realize that to produce one example might
be extremely biased. but it does show that the connection is possible. And did
not Hilbert talk about a “paradise’ when he referred to Cantor’s transfinite
number hierarchy and did not Gordan say ‘Das ist nicht Mathematik, das ist
Theologie’, referring to an existence proof written by Hilbert?

All this does not mean that your average mathematician is a full-scale Pla-
tonist or essentialist. The a priori *obsession” belongs to the tacit background
knowledge. There is no need to affirm it explicitly, since it has already per-
meated the whole of the mathematical world. Are not mathematical truths
discovered (instead of constructed)? Or. more basicallv. the fact that there are
mathematical rrurhs (instead of “bare’ statements)? Or the basic faculty of
mathematical intuition to gain this a priori knowledge (instead of the basic
faculty of investigating (imaginary) fictions or scenarios)?

In fact, what is wrong with a fictionalist account? There are no such things
as abstract objects. but what we do have are helpful fictions. Remarkably
enough, this position is usually rejected by invoking the importance of being

13. See Dauben {1979: 2901.
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consistent. If, say. numbers are fictions. then there is no difference between
the number five and Sherlock Holmes. Both exist in fictional worlds and help
us to achieve a better understanding of this real world. But then, do we not
want a difference between the number five and Sherlock Holmes? Suppose
we do. What does differentiate them? Many argue along the following lines.
If we were to find out that Sherlock Holmes does actually have inconsistent
properties. then this would not mean the end of Holmes. If in one story he is
six feet tall and in another one five feet something, this does not reduce Hol-
mes to the realm of /mpossible fictional objects. But if the number five did
have such inconsistent properties, this would mean the end of the number
five. Herein lies the difference."

However, the distinction is. I believe. not solid. Three short remarks
to defend my case:

(a) If in one and the same story Sherlock Holmes would appear
both as a man and a woman (biologically that is. not disguised
as). then that story has a deep problem that will puzzle any
reader. In other words. our generosity to keep fictional literary
characters alive. is not without bounds;

(b) At present we do not even know and. if metamathematical re-
sults are invoked, we will very likely never know whether
mathematics is consistent or not (such that the proof or argu-
ment is convincing). Hence. as a criterion for a distinction this
is not very helpful;

(c) We have at present such a thing as inconsistent mathematics.'*
Unless one is to reject this as not being proper mathematics,
the whole consistency issue is besides the point. If I insist on
using the term ‘obsession’, it is precisely for the tenacity with
which defenders of the existence of abstract objects, hold on to
their position.

Summarizing, that (b) became the dominant view seems perfectly under-
standable if one takes a view that situates mathematics as part of the culture
wherein it occurs. I am defending the position that the a priori idea was in-
Jjected into mathematics from the outside rather than as a result from or a by-
product of the mathematical activity itself. But this is just saying that to do
mathematics (or whatever it is you are doing) is not the same thing as to
solve your epistemological and ontological problems about mathematics (or
whatever it is you are doing).

14. This is my summary of the position defended by Katz in his [1995]. especially footnote 2.
15. The very first book on this topic is now available: Chris Mortensen’s [1995). In terms of
papers. discussion notes and the like. the issue has been around for quite some time. For histori-
cal background. see Priest. Routley and Norman [1989].
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4. CoNcLusioN

As | said in the beginning, the aim of this paper is quite modest. First, I
have tried to gather some material to show that other pictures besides the
standard picture are possible. Secondly. at least one of them leaves room for
a genuine idea of mathematical experiments. Furthermore, that specific pic-
ture is definitely not the standard picture. Thus, the inevitable conclusion: if
you are eager to talk about mathematical experiments in the full sense of the
word, it is time to reconsider your philosophical options, because Platonism-
cum-experiments will not do the job. Although I focused here on a fictional-
ist account (thereby expressing my personal preference). this still leaves
room for a realist account. but then this will have to be a realism ¢ la Maddy.
as the only world still available to get the realism working, has to be the
‘real” one. But that is (according to my preference) another story.
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