Note: this page will be expanded over the years coming to a fully commentated bibliography of strict finitism.

To start off, here is a list of my own publications on this topic:

  • Finite, Empirical Mathematics: Outline of a Model. Werken uitgegeven door de Faculteit Letteren en Wijsbegeerte (Works edited by the Faculty of Arts and Letters), R.U.Gent, volume 174, Ghent, 1987a. (short note about this book, pdf of the book itself)
  • “Zeno's Paradoxes and the Weyl Tile Argument”. Philosophy of Science, East Lansing, Michigan, 1987b, 54, 2, pp. 295‑302.
  • “Strict, Yet Rich Finitism”. In: Z.W. Wolkowski (ed.): First International Symposium on Gödel's Theorems, World Scientific, Singapore, 1993a, pp. 61‑79.
  • (editor), Modern Perspectives on the Philosophy of Space and Time. Special issue of Philosophica, 50, Gent, 1993b.
  • “How Infinities Cause Problems in Classical Physical Theo­ries”. In: Philosophica 50, 1993c, pp. 33‑54.
  • “Strict Finitism as a Viable Alternative in the Foundations of Mathematics”. In: Logique et Analyse, vol. 37, 145, 1994a (date of publication: 1996), pp. 23-40.
  • “Ross' Paradox is an Impossible Super‑Task”. In: The British Jour­nal for the Philosophy of Science, Vol. 45, 1994b, pp. 743­-748.
  • “In defence of discrete space and time”. Logique et Analyse, volume 38, nrs. 150-151-152, 1995 (date of publication: 1997), pp. 127-150.
  • “Ook het oneindige is ons werk”. In: Dide­rik Batens (red.), Leo Apostel. Tien filosofen ge­tuigen. Hade­wijch, Antwerp/Baarn, 1996, pp. 119-134. (in Dutch)
  • Tot in der eindigheid. Over wetenschap, New-Age en religie. Hade­wijch, Antwerp, 1997 (in Dutch).
  • “Why the largest number imaginable is still a finite number”. Logique et Analyse, 42, 1999 (date of publication: 2002), pp. 107-126.
  • “How to tell the continuous from the discrete”. In: François Beets & Eric Gillet (réd.), Logique en Perspective. Mélanges offerts à Paul Gochet, Ousia, Brussels, 2000, pp. 501-511.
  • “Inconsistencies in the history of mathematics: The case of infi­nitesi­mals”. In: Joke Meheus (ed.): Inconsistency in Science. Dordrecht: Kluwer Academic Publishers, 2002, pp. 43-57 (Origins: Studies in the Sources of Scientific Creativity, volume 2).
  • “Ontwerp voor een analytische filosofie van de eindigheid”. Algemeen Nederlands Tijdschrift voor Wijsbegeerte, volume 95, nr. 1, 2003a, pp. 61-72. In Dutch
  • “Die Grenzen der Mathematik sind die Grenzen ihrer Darstellbarkeit”. In: Michael H.G. Hoffmann (Hrsg.), Mathematik verstehen. Semiotische Perspektiven. Hildesheim: Verlag Franzbecker, 2003b, pp. 258-270.
  • “Classical Arithmetic is Quite Unnatural”. Logic and Logical Philosophy, volume 11, no. 11-12, 2003c, pp. 231-249 (speciaal nummer: Proceedings of Logico-Philosophical Flemish-Polish Workshops II-IV).
  • “Non-Realism, Nominalism and Strict Finitism: The Sheer Complexity of It All”. In: Pieranna Garavaso (ed.): Philip Hugly and Charles Sayward, Arithmetic and Ontology. Amsterdam: Rodopi, 2006, pp. 343-365. (Poznan Studies in the Philosophy of the Sciences and the Humanities, vol. 90).
  • “Een verdediging van het strikt finitisme”. Algemeen Nederlands Tijdschrift voor Wijsbegeerte, volume 102, nr. 3, 2010a, pp. 164-183. In Dutch
  • “Finitism in Geometry”. The Stanford Encyclopedia of Philosophy, Edward N. Zalta (ed.), url = http://plato.stanford.edu/entries/geometry-finitism/, The Metaphysics Research Lab at the Center for the Study of Language and Information, Stanford University, Stanford, CA, 2010b.
  • “The Possibility of Discrete Time”. In: Craig Callender (ed.), The Oxford Handbook of Philosophy of Time, Oxford, OxfordUniversity Press, 2011, pp. 145-162.
  • "A Defense of Strict Finitism". Constructivist Foundations, vol. 7, 2, 2012, pp. 141-149. (pdf)